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A B S T R A C T   

Aging is associated with the impairment of stem cell activation, leading to the functional decline of tissues and 
increasing the risk for age-associated diseases. The old, damaged or unrepaired tissues disturb distant tissue 
homeostasis by secreting factors into the circulation, which may not only serve as biomarkers for specific age- 
associated pathologies but also induce a variety of degenerative phenotypes. In this review, we summarize 
and discuss systemic determinants that perpetuate age-related tissue dysfunction. We further elaborate on the 
effects of attenuating these circulating factors by highlighting recent advances which utilize plasmapheresis in a 
pre-clinical or clinical setting. Overall, we postulate that repositioning therapeutic plasma exchange (TPE) to 
dilute the systemic factors, which become deleterious at their age-elevated levels, could be a rapidly effective 
rejuvenation therapy that recalibrates crucial signaling pathways to a youthful state.   

1. Introduction 

Aging is a universal process of physiological and molecular changes 
that are strongly associated with susceptibility to disease and ultimately 
death [1–5]. Experiments in murine models of parabiosis have demon
strated that heterochronic blood sharing leads to multi-tissue rejuve
nation [6–8]. 

The intuitive conclusion that factors in young blood are responsible 
for the rejuvenation is challenged by the observation that using age- 
neutral saline as a replacement fluid, and not adding but just replen
ishing the albumin lost by the procedure, achieves or exceeds the reju
venation effects observed in the parabiosis model [9]. 

Here we evaluate the possibility of therapeutic plasma exchange 
(TPE) as an innovative treatment modality for broad tissue rejuvenation. 
This review describes the mechanisms by which TPE can attenuate 
harmful blood factors, improve health and enable new approaches for 
profiling the determinants of health and disease. Removal of age 
elevated factors shifts the currently held paradigm, which maintains that 
a decline in young blood factors is responsible for aging and their 

addition is necessary for rejuvenation. We also provide a novel 
perspective on aging research to guide the development of next gener
ation rejuvenative therapeutics. 

2. Therapeutic Plasma Exchange 

Therapeutic Plasma Exchange (TPE) is a medical procedure which 
utilizes blood cell separators to exchange patient’s plasma with physi
ologic fluids such as 5 % albumin or fresh frozen plasma (FFP). TPE 
effectively removes pathogenic circulatory factors such as autoanti
bodies, cytokines, triglycerides, and many others [10]. It is extensively 
used in the treatment of many autoimmune diseases [10]. The adverse 
reactions of TPE when 5 % albumin is used as a replacement fluid are 
seen in 4–7 % of treatments, and are usually mild and related to hypo
calcemia induced by citrate, the anticoagulant used during TPE. When 
FFP is used as a replacement fluid, the adverse reactions increase to 27 
%, as per our own experience in 17,000 procedures (Fig. 1). These re
actions vary from skin rash to severe anaphylaxis to, rarely, 
transfusion-related acute lung injury (TRALI) which is usually fatal. In 
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general, the use of FFP is limited to the treatment of conditions which 
require the infusion of certain plasma factors such as ADAMTS 13 in 
Thrombotic Thrombocytopenic Purpura [11]. 

3. Aging and therapeutic plasma exchange 

Aging could be described as a detrimental loop, which starts with the 
damage to macromolecules and cells; this ironically leads to an impaired 
activation of tissue resident stem cells and subsequent lack of tissue 
maintenance and repair. Ultimately this loop causes tissue pathologies, 
among which adiposity, fibrosis and chronic inflammation are typical 
age-associated features [12] (Fig. 2). Aging tissues also release the 
secretome of adipose, fibrotic and inflammatory cells, as well as senes
cent cells (the senescence-associated secretory phenotype, SASP, pro
teins) into the circulation. 

With aging, the circulation contains numerous signals of tissue 
damage [12] that are reduced by TPE (Fig. 2), including self-molecules, 
cellular debris, micro RNAs, lipofuscins, advanced glycation 
end-products (AGEs), Tau protein aggregates, alpha-synuclein fibrils, 
and amyloid-β (Aβ) peptides. These factors circulate in bodily fluids 
partly within extracellular vesicles, and can spread from inflamed 
unrepaired organ sites to distant cells and tissues. Heterochronic para
biosis demonstrated that the systemic milieu broadly regulates the 
processes of aging and rejuvenation [6–8]. Experiments that allow 
sharing only blood between a younger and older mouse, or just the 
soluble plasma fraction, have further narrowed down the rejuvenative 
effects of heterochronic parabiosis, which are driven by systemic factors 
[7,12]. 

Blood from an older mouse quickly ages a young mouse, suggesting a 
potent dominant inhibitory effect of pro-geronic factors over younger 
ones. This data is counter to the intuitive idea that young blood and its 
factors could be injected into older individuals to make them younger, 
even in the presence of aged tissues and old circulatory milieu. 

Fig. 1. Adverse reaction rates of TPE when albumin is used as a replace
ment fluid vs FFP. Adverse reaction rates with fresh frozen plasma (FFP) is 
approximately 4 times greater than those of albumin-saline. 

Fig. 2. Emerging blood rejuvenation strategies with a focus on plasmapheresis. Older individuals accumulate systemic proteins that become pro-geronic and 
dominantly inhibit production of the “youthful” proteins as well as tissue health and repair, when age-elevated. These pro-geronic factors can be removed by 
plasmapheresis. 
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Interestingly, our recent papers highlight broadly positive effects of old 
plasma dilution on tissue health and regeneration [9,13]. These studies 
suggest that simply the removal of pro-geronic factors rapidly and 
robustly rejuvenated multiple organs in aged mice and improves their 
cognition. After TPE in older humans, a number of clinical factors 
improve, and their serum is more supportive of progenitor cell prolif
eration, suggesting overall rejuvenation in humans too. 

An unexpected observation is that TPE not only caused a decrease of 
certain proteins, but also the increase of others, suggesting a profound 
regulatory capacity (Fig. 3). 

The proteomics analysis suggests that TPE can influence three basic 
physiologic mechanisms which contribute to the aging process: cellular 
senescence, immunosenescence and chronic inflammation (inflammag
ing). In addition, removing age-accumulated factors appears to abrogate 
their autoinduction. This could indirectly restore rejuvenative factors to 
more youthful levels, which were otherwise attenuated by the presence 
of inhibitory proteins [9]. 

4. Cellular senescence and TPE 

Cellular senescence is characterized by cell cycle arrest and activa
tion of a hyper-secretory phenotype (senescence associated secretory 
phenotype (SASP) [14]. 

SASP is associated with the production of growth factors, chemo
kines, cytokines, proteases, bioactive lipids, and extracellular vesicles, 
many of which are pro-inflammatory and affect distant tissue health and 
repair, accelerating the aging process at the organismal level by main
taining a chronic inflammatory response [15–17]. These factors include, 
but are not restricted to, Interleukin (IL)-1α, IL-1β, IL-6, IL-8, 
growth-related oncogene (GRO)-α and GRO-β, several members of che
mokine (C-C motif) ligand (CCL) and chemokine (C-X-C motif) ligand 
(CXCL) family, granulocyte-macrophage colony-stimulating factor, 
macrophage stimulating factor, insulin-like growth factor binding pro
teins, and extracellular remodeling proteins, such as matrix metal
loproteinases and serine proteases. 

While senescent cells are not well characterized in vivo, it has been 
postulated that these cells can drive many aspects of aging and diseases. 
For example, in transplantation experiments or through senolytic 
studies, senescent cells were proposed to exacerbate such age-associated 
diseases, as cancer, osteoarthritis, osteoporosis, atherosclerosis, Par
kinson’s diseases, and Alzheimer’s. In these regards, it is interesting that 
peripherally acting senolytic ABT263 diminished brain senescence yet 
failed to robustly improve brain health in old mice [13]. At the same 
time, neutral blood exchange that also acts peripherally and dilutes old 
systemic milieu had a profound multi-faceted rejuvenating effects, not 
only improving neurogenesis and reducing neuro-inflammation, but 
enhancing cognitive capacity of the old mice [13]. These results suggest 
that TPE/NBE do not act simply by diluting SASP. 

Of note, senescent cells are a heterogeneous population that has 
positive and negative molecular markers, and whether these cells are a 
cause, or a consequence of aging is still under intense investigation. 
Muscle cells (young and old alike) that are differentiating after an injury 
express the CDK inhibitor p16, which is commonly considered to be a 
senescent cell marker [18,19]. These reports suggest that the mecha
nisms of cellular senescence use normal programs common to many 
cells. p16-Ink4a is also essential for regeneration [19,20], so it might be 
thus beneficial to attenuate SASP without physically ablating all se
nescent cells [21]. While the basic science research on senolytics is 
exciting, there is minimal evidence to support their use in humans [22]. 
Disappointingly, recent clinical trials by Unity did not find an 
improvement in osteoarthritis (https://www.longevity.technology/u 
nity-cuts-lead-program-after-clinical-trial-fail/). On the other hand, 
TPE can effectively dilute SASP and thus, broadly attenuate 
inflammation. 

5. Immunosenescence and TPE 

Immunosenescence is the gradual age associated functional decline 
of the immune system. This decline contributes to increased risk of 
morbidity and mortality. Immunosenescence contributes to altered in
flammatory response and impaired stem cell function. Older individuals 
are more susceptible to infections and have poor response to vaccines 
because of inefficient immune system [23,24]. 

Common effects of aging of the immune system include a decline in 
the production of fresh naïve T-cells, a less expansive T-cell receptor 
(TCR), and weaker activation of 

T-cells. Clonal populations of CD8+ T-cells expand during aging, 
limiting their diversity. In addition to removing pathogenic proin
flammatory factors, TPE has been shown to affect cellular immunity as 
well. TPE leads to normalization of CD4/CD8 ratio in patients with 
autoimmune diseases. It also affects the Th1/Th2 ratio and the pro
duction of cytokines by these cells. 

Repeated TPE leads to the increase of CD4+/CD25+ T-cells, corre
lating with clinical improvement in patients with systemic lupus 
erthythematosus (SLE) [25–30]. 

6. Systemic chronic inflammation (SCI) and TPE 

Chronic inflammatory diseases have been recognized as the most 
significant cause of death in the world today. More than 50 % of all 
deaths are attributed to chronic inflammatory diseases including 
ischemic heart disease, stroke, cancer, type 2 diabetes, chronic kidney 
disease, non- alcoholic fatty liver disease (NAFLD) and autoimmune and 
neurodegenerative disorders [31]. Acute inflammation is usually trig
gered by infections. Following the resolution of infection, the production 
of regulatory molecules signals the cessation of the acute inflammatory 
response. 

In contrast, SCI is triggered in the absence of an acute infection by 
“sterile” agents such as physical, chemical, or metabolic noxious stimuli 
[14,31]. Chronic infections may also contribute to SCI. Chronic infection 
with CMV has been associated with the so-called immune risk phenotype 

Fig. 3. Differential expression of serum proteins after TPE. Bar graph 
schematic of the downregulation of two select proteins (green bars), Thymus- 
Expressed Chemokine (CCL25) & TNFSF10, and the upregulation of another 
pair of select proteins (red bars), Platelet Factor 4 (PF-4) & erythropoietin 
(EPO) after TPE. These results were demonstrated by Mehdipour et al [9]. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article). 

M. Mehdipour et al.                                                                                                                                                                                                                            

https://www.longevity.technology/unity-cuts-lead-program-after-clinical-trial-fail/
https://www.longevity.technology/unity-cuts-lead-program-after-clinical-trial-fail/


Transfusion and Apheresis Science xxx (xxxx) xxx

4

that has been predictive of early mortality in longitudinal studies [32, 
33]. SCI is increased with age, as indicated by increased levels of 
circulating levels of cytokines, chemokines and acute phase proteins as 
well as greater expression of genes involved in inflammation [34]. 
Cellular senescence is also a major contributor to SCI with the contin
uous release of proinflammatory SASP [31]. 

Age related defects that lead to persistent inflammation include 
unrepaired damaged macromolecules, mis-adaptation to stress and 
altered metabolism [34]. This is accompanied by changes in the immune 
system that favor innate inflammatory response when adaptive immu
nity becomes deficient. The biomarkers of inflammation are a strong 
predictor of morbidity and mortality in older individuals. Among the 
inflammatory mediators, IL- 6, CRP and Interferon (ISN)-gamma are of 
particular interest. TPE has the capacity to diminish circulatory 
inflammaging directly through the dilution of systemic proinflammatory 
proteins, (Fig. 4) by the antioxidant and sequestering activities of al
bumin and from any change or resetting of the immune system [35–37]. 

Our recent study demonstrated that plasmapheresis in mice and in 
people caused a molecular re-setting of the systemic signaling milieu, 
where the levels of many positive determinants of tissue homeostasis 
and regeneration, e.g. the “young” angiogenic, growth factors, immune 
modulators, etc., become upregulated after treatment [9] (Fig. 3). 

7. Research on TPE in aging 

7.1. Comparative analysis of blood samples 

some studies, in addition to studying the protein in the removed 
plasma, compared protein measurements from blood samples taken 
before and after TPE treatment. A 2016 study analyzed blood samples 
taken up to three weeks after TPE treatment to study the longer term 
effects of the treatment found a normalization of IgG levels (stopped 
only after other medicines the patients were receiving may have inter
fered with the results) [38]. Another study combined the results of 
standard laboratory tests on proteins involved in blood coagulation with 
rotational thromboelastometry tests, which indicated a decreased ability 
to coagulate and established the removal of adipokines and inflamma
tory markers to the ng/ml level [39]. A 2020 study provided a 
comprehensive list that categorizes numerous proteins that are removed 
through TPE, but it is limited to 8 patients with a preexisting condition. 
It determined that the removed proteins were primarily involved in 

pathways of the signal transport, immune system, and endocrine system 
[40]. 

7.2. Exosome profiling 

ultracentrifugation of plasma removed during TPE allows for the 
isolation of exosomes, which are extracellular vesicles found in eu
karyotes that contains RNA and proteins. This technique was used by 
one of the most comprehensive TPE proteomic studies in a recent 2020 
publication, where researchers analyzed exosomes using mass spec
trometry and data- independent acquisition to identify 647 exosomes 
containing TPE influenced proteins [40]. Some significantly increased 
proteins include complement factor H-related protein 5 (CFHR5), 
bridging integrator 2 (BIN2), neuroplastin, pigment epithelium-derived 
factor (PEDF), ficolin-1, extracellular matrix protein 1, fatty 
acid-binding protein 5 (FABP5) and immunoglobulin lambda variable 
5–52 (IGLV5-52). Proteins that were decreased after TPE in that study 
included hornerin (HRNR), keratin, type I cytoskeletal 9, procollagen 
C-endopeptidase enhancer 1, immunoglobulin heavy variable 2-70D, 
tyrosine kinase binding protein (TYROBP), T-cell surface glycoprotein 
CD5 (Cd5), thrombospondin-1 (THBS1), pentraxin 3 (Ptx3), and 
coronin-1C [40]. 

7.3. Bacterial autoinducers and attenuation of quorum sensing 

The rate of infections rises with age as resilience diminishes. TPE 
carries a small risk of infection, but at the same time the removal of 
certain quorum-sensing proteins (autoinducers) by TPE may reduce the 
pathogenic severity of bacterial diseases [41–43]. In the example of 
autoinducers, one possible study design would be to examine the effects 
of TPE on specific autoinducers that are exemplified by Pseudomonas 
aeruginosa, a human pathogen that is the leading cause of death in cystic 
fibrosis patients [44]. Studies in mice comparing wild-type P. aeruginosa 
with P. aeruginosa that is prevented from quorum sensing through mu
tations show a direct correlation between quorum sensing and virulence 
[45]. Additionally, autoinducers of P. aeruginosa can be identified in 
plasma and their presence correlates with the progression of cystic 
fibrosis [46]. There has also been research into the best procedure for 
blood collection and plasma storage for quorumsensing peptide stability 
[47]. It would be important to examine if TPE can remove the auto
inducers produced by the bacterial pathogens [48]. 

7.4. Calibration of cytokines and immune response 

Most cytokines return back to normal levels a day or two after TPE, 
but a few (such as, sICAM-1, sTNF-R, and resistin), remain lowered for 
longer time points afterward [49]. Additionally, although there are 
theories of a possible “rebound” of cytokines after TPE, this claim has 
not been conclusive [50]. TPE is also implicated in homeostasis of im
mune regulators, such as Cd5, TYROBP, and Ptx3 [40]. Additionally, a 
component of MCH class I, Beta-2 microglobulin (B2M), is a protein that 
becomes elevated in older tissues, but not in the aged blood stream [51]. 

Older adults are at a greater risk of developing severe complications 
from COVID-19 [52] 

due, in part, to chronic systemic inflammation [53]. A greater 
abundance of proinflammatory cytokines may contribute to the cytokine 
storm that is evident in COVID-19 patients. It was shown that TPE can 
attenuate severe inflammatory response syndrome in sepsis patients and 
the unregulated immune responses that at times follow CAR-T cell in
fusions [54]. Notably, TPE with 5 % albumin replacement also upre
gulates innate and adaptive immune factors that positively modulate 
immune responses to viral particles [9]. These findings suggest that TPE, 
especially along with convalescent plasma infusion at the end of the 
procedure, can be an effective treatment for COVID-19 [53]. A ran
domized controlled clinical trial recently demonstrated that TPE is an 
effective treatment for COVID-19 [55]. Fig. 4. Decrease of C Reactive protein (CRP) after a single TPE procedure.  
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Other specific targets of TPE include highly charged proteins 
identified as having a high probability of losing stability due to oxida
tion with age. Plasma adipokines and cytokines such as Leptin, resistin, 
soluble CD40 ligand (sCD40 L), sICAM-1, soluble tumor necrosis factor 
receptor (sTNF-R), and monocyte chemoattractant protein 1 (MCP-1) 
maybe potential candidates [49]. 

8. Conclusions 

Old blood factors removal has been proven to have a robust and 
rapid rejuvenative effect and it can be positively compared to other anti- 
aging rejuvenative therapeutics, such as senescent cell ablation. 
Replacing old blood with young blood, through both heterochronic 
parabiosis and blood exchange, has been shown to rejuvenate old mice 
in their multiple tissues [6,7]. This rejuvenation included but was not 
limited to muscle regeneration, reduction in liver fibrosis and adiposity. 
Parabiosis, but not blood exchange, enhanced hippocampal neuro
genesis and boosted cognitive function [8]. These results were largely 
similar to the rejuvenative effects seen with TPE, suggesting that dilu
tion of the systemic factors that become pro-geronic with age may be as, 
or more important than, the addition of youthful pro-rejuvenative fac
tors [9]. 

One interesting idea is that senolytics work in large part through 
attenuation of SASP, which is achievable by TPE. Because repositioning 
TPE as a rejuvenative therapeutic is a relatively new concept, there are 
many unexplored questions regarding its potential and utility. Our 
recent 2020 studies demonstrated rejuvenation of three key tissues – 
muscle, liver and brain [9], as well as improved cognition and short 
memory in old mice [13] – but other areas of health that decline with 
age are yet to be explored. Furthermore, it is unknown how long these 
rejuvenative effects persist. The health of the studied tissues is inter
estingly closer to the young than the old mammal (e.g. robustly reju
venated), but it is unknown if the rate of tissue health decay will be akin 
to a middle-aged mouse or if it will decline at a different rate. Perhaps, 
TPE will continue to stave off tissue decline for a longer period. 

Aging results in a near-endless list of systemic changes on tissue, 
cellular and molecular levels, and multiple methods of therapeutics will 
be required to address these alterations. More research is clearly needed 
to develop and explore the applications of rejuvenative plasmapheresis 
alone or in combination with other therapeutics. 
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